Lyostypt®
TIME TO HEMOSTASIS
Lyostypt®
TIME TO HEMOSTASIS

WHAT IS NEEDED

- Efficient Hemostasis (1-3)
- Cost efficient (2)
- Absorbed within 3 weeks (4-6)
- Excellent biocompatibility (6)

Adaptable

Lyostypt® is used for hemostasis of capillary bleeding, oozing hemorrhages, bleeding of parenchymal organs and as a supportive measure for other hemostasis techniques.
Summary of Advantages of Lyostypt® vs Oxidized cellulose according COBBANA Trial (2)

- Faster hemostasis than oxidized cellulose in suture hole bleedings of arterial bypass anastomosis.
- Better adhesion to tissue and surgical handling than oxidized cellulose in suture hole bleedings of arterial bypass anastomosis.
- Lower amount of material needed to stop bleeding in comparison to oxidized cellulose.

COBBANA:
Control of bleeding in arterial bypass anastomosis (7)

- Prospective, randomized clinical trial.
- Comparison of fibrillar collagen (Lyostypt®) versus oxidized regenerated cellulose (Surgicel®) (7).
- Hemostatic effect and handling properties were rated in suture hole bleeding of peripheral arterial bypass anastomosis using PTFE graft prosthesis.
- N = 64 anastomoses (32 Lyostypt®, 32 Surgicel®).
FASTER HEMOSTASIS

Bleeding time of the anastomoses

- Fibrillar collagen showed significantly faster hemostasis (124 ± 67 sec) compared to oxidized regenerated cellulose (416 ± 226 sec) in suture hole bleedings of arterial bypass anastomosis (2).

- Fibrillar collagen stopped suture hole bleeding of the anastomoses in less than 3 minutes in over 80% of cases. Oxidized cellulose needed more than 5 minutes to stop suture hole bleeding in most of the anastomoses performed (2).

Intraoperative efficacy rating

- Fibrillar collagen showed better adherence to the tissue and handling properties compared to oxidized regenerated cellulose in suture hole bleeding of arterial bypass anastomoses (2).

- Less fibrillar collagen devices were needed to achieve hemostasis, demonstrating its major cost-effectiveness (2).

Fibrillar collagen did not need to be repositioned in more than 80% of the anastomoses performed. In cases where needed, collagen could be easily repositioned in all cases (2).
REFERENCES

(4) [Data on file] Weber. Summary of animal studies to test three different hemostatic devices, which are used to stop severe liver bleeding (2006).

(5) [Data on file] Weber. Research program testing hemostatic compress material (Sangustop) in a functionality study (Hemostasis of severe liver bleedings) (2007).

AESCULAP® – a B. Braun brand

Aesculap AG | Am Aesculap-Platz | 78532 Tuttlingen | Germany
Phone +49 7461 95-0 | Fax +49 7461 95-2600 | www.aesculap.com

The main product trademark „AESCULAP“ and the product trademark „Lyostypt“ are registered trademarks of Aesculap AG.
The product trademark „Surgicel“ is a registered trademark of Johnson & Johnson.
Subject to technical changes. All rights reserved. This brochure may only be used for the exclusive purpose of obtaining information about our products. Reproduction in any form, partial or otherwise, is not permitted.