PLIF interbody fusion device

Intended Use

  • Stabilization of the lumbar and thoracic spine through posterior approach, monosegmental and multisegmental.
  • Always implant two implants per layer (PLIF technique).
  • Always use PROSPACE® 3D in conjunction with an internal fixator.


Implant Design

  • Solid frame without sharp edges for biomechanical stability and smooth insertion into the disc space minimizing the risk to injure surrounding soft tissue.
  • Open porous structure designed to provide primary and secondary stability.
  • The implant’s anatomical endplate design provides a good contact area between implant and vertebral endplates whilst allowing addition of bone material to enable bone growth through the center of the implant.
  • Bulleted nose for smooth insertion into the disc space.
  • Screw thread interface allows a firm connection to inserter.
  • Good visibility in X-ray to localize implant positioning [1], [2]

[1] Usability-Test, Usability Validation of AESCULAP® PROSPACE® 3D Cages, Tubingen, 2019. The usability of the AESCULAP® 3D Cage System PROSPACE® 3D was tested in April 2019, in a cadaver workshop with six independent test persons as intended users (surgeons specialized in spinal surgery or comparable fields). Parameters such as implant visibility under x-ray control, mechanical stability of the implant / instrument interface and implant surface evaluation in terms of tissue injury risk were tested among others. Acceptance criteria were fulfilled for all the above-mentioned parameters. All test users confirmed the absence of critical features that must be improved prior to clinical use. [2] Rehnitz, Christoph, PD Dr. med. Radiological image evaluation of AESCULAP® interbody fusion devices, Heidelberg, 2019. CT and X-ray visualization of different AESCULAP® interbody fusion cages (full titanium, porous Ti6Al4V and PLASMAPOREXP® cages) was tested in a cadaver setup. A radiologist evaluated the implant visibility and the presence of artefacts that may limit the visualization of adjacent structures. Visualization and assessment of implant position was achieved in X-ray and CT for all tested cages. Minor artefacts were visible in CT reconstructions in the surrounding of porous Ti6Al4V and full titanium implants. Porous Ti6Al4V implants showed slightly fewer artefacts in CT in comparison to full titanium implants. The minor artefacts observed did not limit the assessment of the surrounding anatomical structures.